

Dan Rodier, Ph.D. How clean is it? Surface Particulate Contamination and Cleanliness Testing

INTRODUCTION to surface cleanliness testing

How is it accomplished?

- No scanners exist to examine complex surfaces, so particles must be extracted from the part surface
- Once extracted, extraction fluid must be examined for particle size and number

Ultrasonic extraction

- Used for most types of parts, materials and sizes
- Ultrasonic energy tends to be uniform and removes even strongly bonded particles
- Clean a container using ultrasonics and rinsing
- Requires background measurement w/ ultrasonics

SCHEMATIC of Surfex[®] Ultrasonic System with Particle Counter

- Place part into liquid and apply ultrasonic energy
- Ultrasonic duration must be timed accurately and be repeatable
- Care must be taken to avoid part damage through erosion

PROCESS

1. Ultrasonic aqueous cleaning

Variable power levels

Variable frequencies

2. Continuous particle monitoring of ultrasonic tank

Determine number and size of particles that are removed from the parts After cleaning/testing parts, determine when the tank is clean enough for the next batch

- Recirculating system with filtration
- Single-pass system

3. Particle counting

- Laser optical particle counter
- Commonly measures from 2 μ to over 125 μ diameter particles
- Can measure as small as 0.1 μ
- In well-constructed tests, it is not necessary to measure entire

Sample repeatability

Data analysis from the systems

1. Compare performance of different cleaning systems Compare consumable cleanliness

2. Validate current process

Determine if process changes are improvement or detriment to part cleanliness

Establish which part's cleanliness is critical

Establish cleanliness specifications on incoming parts/materials

Evaluating performance of SMIF pod wash system

Evaluating performance of particle removal from cassettes

Box washer effectiveness on cassettes

Troubleshooting incoming components

Comparing cleanliness of packaged elastomer components

Identifying source of contaminated parts

Manufacturing lines in three different countries

Comparing cleanliness of parts from three manufacturing lines

Consumable testing – nitrile gloves

Cleaning optimization

Optimization procedure to determine:

- Ultrasonic frequency
- Ultrasonic power
- Extraction time

Without damaging part and maximizing particle extraction

1,200,000

Gloves from companies A, B and C

CONCLUSION

- Surface contamination testing provides valuable information about the cleanliness of critical components
- It helps gauge the performance of the cleaning system
- It reduces uncertainty about the final assembly

References:

Awad, Sami B., "Determination of residual particles on surfaces. An updated method for particle extraction using ultrasonics" Particles on Surfaces 9: Detection, Adhesion and Removal, pp. 1–8 (2009), Ed. K.L. Mittal.

Gatov, Michael, "Using the Taguchi Method to Determine Optimal Process Settings", A2C2, November 2002, pp. 11 – 15.

Vetrimurugan, et al, "Experimental Investigation of Ultrasonic and Megasonic Frequency on Cleaning of Various Disk Drive Components", International Journal of Chemical Engineering and Applications, Vol. 4, No. 4, August 2013, pp. 174 – 177.